Model Inference Benchmark
The benchmark test environment is as follows:
OS: Ubuntu 18.04.5 LTS / 5.4.0-53-generic
MEMORY: 32G DIMM DDR4 Synchronous 2666 MHz
CPU: Intel(R) Core(TM) i5-10400 CPU @ 2.90GHz
GCC: gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
GPU: GeForce RTX 3080
CUDA: CUDA Version: 11.1
GPU Driver: Driver Version: 455.23.04
Image Classification
| Model Name | Input Image Size | Inference Time (ms) | Fps | Backend |
|---|---|---|---|---|
| MobilenetV2 | 224x224 | 1.03ms | 969.7 | cuda |
| ResNet-50 | 224x224 | 3.35ms | 298.8 | cuda |
| Densenet-121 | 224x224 | 3.67ms | 272.8 | cuda |
Image Object Detection
| Model Name | Input Image Size | Inference Time (ms) | Fps | Backend |
|---|---|---|---|---|
| YOLOV5-X | 640x640 | 25.06ms | 39.9 | cuda |
| YOLOV5-L | 640x640 | 19.92ms | 50.2 | cuda |
| YOLOV5-M | 640x640 | 16.61ms | 60.2 | cuda |
| YOLOV5-S | 640x640 | 14.47ms | 69.1 | cuda |
| YOLOV5-N | 640x640 | 13.21ms | 75.7 | cuda |
| nanodet_plus_m_1x5 | 416x416 | 5.34ms | 187.3 | cuda |
Image Scene Segmentation
| Model Name | Input Image Size | Inference Time (ms) | Fps | Backend |
|---|---|---|---|---|
| BiseNetV2 | 512x1024 | 16.20ms | 61.7 | cuda |
Image Enhancement
| Model Name | Input Image Size | Inference Time (ms) | Fps | Backend |
|---|---|---|---|---|
| Attentive-Gan | 240x320 | 453.72ms | 2.204 | cuda |
| Enlighten-Gan | 256x256 | 6.81ms | 146.8 | cuda |
Image Feature Point
| Model Name | Input Image Size | Inference Time (ms) | Fps | Backend |
|---|---|---|---|---|
| Superpoint-N | 120x160 | 0.94ms | 1064.9 | cuda |
| Superpoint-S | 240x320 | 3.05ms | 328.1 | cuda |
| Superpoint-M | 480x640 | 14.3ms | 70.07 | cuda |
| Superpoint-L | 960x1280 | 66.6ms | 15.01 | cuda |
Image OCR
| Model Name | Input Image Size | Inference Time (ms) | Fps | Backend |
|---|---|---|---|---|
| DBNet | 655x445 | 12.02ms | 83.21 | cuda |
Reference