mortred_model_server

High Performan Ai Model Web Server. Mainly support computer vision model. Quickly establish your own ai-model server. https://github.com/MaybeShewill-CV/mortred_model_server

View on GitHub

Model Inference Benchmark

The benchmark test environment is as follows:

OS: Ubuntu 18.04.5 LTS / 5.4.0-53-generic

MEMORY: 32G DIMM DDR4 Synchronous 2666 MHz

CPU: Intel(R) Core(TM) i5-10400 CPU @ 2.90GHz

GCC: gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0

GPU: GeForce RTX 3080

CUDA: CUDA Version: 11.1

GPU Driver: Driver Version: 455.23.04

Image Classification

Model Name Input Image Size Inference Time (ms) Fps Backend
MobilenetV2 224x224 1.03ms 969.7 cuda
ResNet-50 224x224 3.35ms 298.8 cuda
Densenet-121 224x224 3.67ms 272.8 cuda

Image Object Detection

Model Name Input Image Size Inference Time (ms) Fps Backend
YOLOV5-X 640x640 25.06ms 39.9 cuda
YOLOV5-L 640x640 19.92ms 50.2 cuda
YOLOV5-M 640x640 16.61ms 60.2 cuda
YOLOV5-S 640x640 14.47ms 69.1 cuda
YOLOV5-N 640x640 13.21ms 75.7 cuda
nanodet_plus_m_1x5 416x416 5.34ms 187.3 cuda

Image Scene Segmentation

Model Name Input Image Size Inference Time (ms) Fps Backend
BiseNetV2 512x1024 16.20ms 61.7 cuda

Image Enhancement

Model Name Input Image Size Inference Time (ms) Fps Backend
Attentive-Gan 240x320 453.72ms 2.204 cuda
Enlighten-Gan 256x256 6.81ms 146.8 cuda

Image Feature Point

Model Name Input Image Size Inference Time (ms) Fps Backend
Superpoint-N 120x160 0.94ms 1064.9 cuda
Superpoint-S 240x320 3.05ms 328.1 cuda
Superpoint-M 480x640 14.3ms 70.07 cuda
Superpoint-L 960x1280 66.6ms 15.01 cuda

Image OCR

Model Name Input Image Size Inference Time (ms) Fps Backend
DBNet 655x445 12.02ms 83.21 cuda

Reference